Inverse Scattering on the Line with Incomplete Scattering Data

نویسندگان

  • Tuncay Aktosun
  • TUNCAY AKTOSUN
چکیده

The Schrödinger equation is considered on the line when the potential is real valued, compactly supported, and square integrable. The nonuniqueness is analyzed in the recovery of such a potential from the data consisting of the ratio of a corresponding reflection coefficient to the transmission coefficient. It is shown that there are a discrete number of potentials corresponding to the data and that their L-norms are related to each other in a simple manner. All those potentials are identified, and it is shown how an additional estimate on the L-norm in the data can uniquely identify the corresponding potential. The recovery is illustrated with some explicit examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

ar X iv : m at h - ph / 9 91 10 32 v 1 2 5 N ov 1 99 9 PROPERTY C FOR ODE AND APPLICATIONS TO INVERSE PROBLEMS

An overview of the author's results is given. Property C stands for completeness of the set of products of solutions to homogeneous linear Sturm-Liouville equations. The inverse problems discussed include the classical ones (inverse scattering on a half-line, on the full line, inverse spectral problem), inverse scattering problems with incomplete data, for example, inverse scattering on the ful...

متن کامل

Property C for Ode and Applications to Inverse Problems

An overview of the author’s results is given. Property C stands for completeness of the set of products of solutions to homogeneous linear Sturm-Liouville equations. The inverse problems discussed include the classical ones (inverse scattering on a half-line, on the full line, inverse spectral problem), inverse scattering problems with incomplete data, for example, inverse scattering on the ful...

متن کامل

Strauss ) . Property C for ODE and applications to inverse problems

An overview of the author’s results is given. Property C stands for completeness of the set of products of solutions to homogeneous linear Sturm-Liouville equations. The inverse problems discussed include the classical ones (inverse scattering on a half-line, on the full line, inverse spectral problem), inverse scattering problems with incomplete data, for example, inverse scattering on the ful...

متن کامل

Investigation of the effect of source distance and scattering medium on spatial resolution and contrast of Gamma camera images [Persian]

By identifying the effect of any parameter such as distance, attenuation and scattering on the Line Spread Function (LSF), one can compensate the quantitative and qualitative destructive effect of such parameters by deconvolution method. Using a 99mTC line source, this study was performed on a single head ADAC SPECT system operating in planar mode. Variation of FWTM and FWHM and LSFs as a...

متن کامل

An iterative approach to non-overdetermined inverse scattering at fixed energy

We propose an iterative approximate reconstruction algorithm for non-overdetermined inverse scattering at fixed energy E with incomplete data in dimension d ≥ 2. In particular, we obtain rapidly converging approximate reconstructions for this inverse scattering for E → +∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004